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Two novel schemes are proposed for the calculation of comprcssibfe Sow of an idcal 
kid. One method is the equilibrium analog of the well-known discrete-particle direct 
simulation Monte Carlo method for the treatment of nonequilibrium ideal-gas Aows. The 
second follows from an analytical treatment of the model inertial-transport mechanisms 
inherent in the first scheme. Accounts of the methods are presented for general one-dimenn- 
sional unsteady flow. As a calculated example, the one-dimensional unsteady piston-sboc,k 
problem is simulated and the results are compared to the exact solution. Although the 
present treatment is restricted to inviscid perfect-gas flow, indications are given of exten- 
sions of one scheme to include viscous and heat-conduction effects, and also to the treatment 
of fluids with more general thermodynamic state relations. 

Since the advent of digital computers some 20-30 years ago, a very large number of 
numerical schemes have been proposed for calculating both mternal and external 
compressible inviscid fluid flows. Although these methods have varied ~ons~d~r~b~y 
in their conception and formulation as well as in the details of their computational 
execution, they have almost all to some extent utihzed differenced or integrated 
approximations to some form of the partial differential eqllations (continuity, Euler, 
and energy equations) describing the continuum mechanical/lknermodynalllic chid 
state. This apphes even to the various forms Of the particlc-in-cell method developed 
by Harlow [I] and co-workers in which the particles essentially simulate the transport 
terms in the governing differential equations while finite-differenced forms Of these 
equations, less the transport terms, are treated in standard fashion. 

Bn the present paper we propose two schemes for the calculation of compressible 
inviscid Bow of a perfect gas, both of which arc suggested by considering the eqai- 
Gibrium limit of Bird’s 12, 31 Monte Carlo discrete-particle direct simulation method 
(DSM) for the treatment of the nonlinear dilute gas Bahzmann equation. The first is 
itself a discrete-particle method while the second exhibits Features of boih particle and 
conventional. continuum approaches. Both schemes are based essentially on direct 
calculation of local molecular transport of mass, momentum, and energy in the Cd 
SO that recourse to continuum formulations in terms of parti&diEerential equations 
is not required. 
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2. BACKGROUND 

Here we give a brief account of DSM sufficient to place the present work in context. 
For a more detailed account see Bird [2, 31. DSM is essentially a particle simulation 
of the nonlinear Boltzmann equation 

(1) 

wheref(x, t, u) is the molecular distribution function, x the position vector, t the time, 
u = (u, ZJ, W) the particle velocity, and n(x, t) the macroscopic particle number 
density. In Eq. (1) the left side is the particle movement or convection operator and 
L(f,f) is the collision operator representing changes in f due to binary collisions 
between molecules. In DSM no actual use of Eq. (1) is made, and the phase space 
(i.e., x, u) information is carried directly by an ensemble of a few thousand sample 
particles which at any instant are assumed to represent a sample from f within the 
phase space S being considered. Starting from some initial configuration DSM 
computes the evolution of the sample ensemble through a sequence of discretized 
timeintervalsjdt,j = 1,2 ,... . Under certain conditions on d t the two sides of Eq. (1) 
may be decoupled and each may be simulated alternately in the time sequence. During 
the convection simulation each particle moves in a free trajectory in dt interacting 
with any boundary encountered according to prescribed boundary strategies. For the 
simulation of the right side of Eq. (1) a statistical interpretation of L(f, f) leads to a 
simple algorithm for the calculation of sample collisions during At in each of a set of 
spatial cells which represent the spatial component of S. Statistical estimates of fluid 
state or body surface properties (pressure, etc.) represent the “solution” to the flow 
problem and are obtained by averaging the contributions of individual particles as 
they pass through cells or strike the body surface during the calculation. 

Now it is a well-known property of Eq. (1) that the effect of L(f,f) is to drive the 
gas toward a state of local equilibrium with a Maxwellian distribution of particle 
velocities given by 

.6(u) = (B3h3/3 exp[-P2@ - W21, (2) 

where U,(x, t) is the local bulk fluid velocity, /3 = (2LT/~z)-l/~, T(x, t) is the gas 
temperature, m is the particle mass, and 6 is Boltzmann’s constant. The assumption of 
perfect-gas inviscid flow is equivalent to f = fo everywhere, for which L(f, , fo) = 0. 
Substituting f = f. into Eq. (1) and taking mass, momentum, and energy moments 
of the result then leads to the continuity, Euler momentum, and energy equations 
which constitute the continuum description of perfect-gas inviscid fluid flow. 

The following accounts of the present calculation schemes are restricted for clarity 
of presentation to one-dimensional unsteady perfect-gas flow. However, both schemes 
may be readily applied in principle to two- and three-dimensional problems. For the 
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present one-dimensional case we shall utilize the following form of the e 
specific internal energy; 

e = B(v + 2) RT, 

where R = k/m is the gas constant and v = (5 - 3y)l(y - 1) is the number of 
internal degrees of freedom of a molecule, y being the ratio of specific heats. In Eq. (36, 
e contains the thermal energy of only two of the three independent translational ene 
modes in addition to proper internal modes with v degrees of freedom. The 
pendent treatment of the third translational energy mode is an essential part 
present schemes. 

3. EQUILIBRIUM PARTICLE SIMULATION METHQD ~~~~~~ 

In the first of the present methods (EPSM), the L(J f) sim~atio~ in DS 
replaced by an algorithm for the calculation of particle velocities in the next At 
on the inviscid flow assumption f = f. everywhere. This allows computation of 
particle velocities as they are required for movement so that individual particle 
velocities and energies need not be stored. The simulation then reduces to a sequence 
of particle movements in a time-step sequence in which each particle adjusts 
equilibrium conditions at the end of each time step. Other features such as the 
of the flow field into stationary or moving cells of arbitrary shape and the st~t~stl~~ 
estimates of flow properties are as for standard DSM so that existing prog 
may be readily modified. 

The flow field of interest is a closed or open region of one-dimensional x-space 
with boundaries 2&)(t) which will usually consist of solid reflecting surfaces. Time is 
discretized into an interval sequence tj < t < tj+l , with tj = j At, j = 0, 1, Z,..., J9 
where dt is a basic time interval restrictions on which will be discussed subseq~e~t~~. 
The space L?(t) is divided into K cells wk , k = l,..., K, of arbitrary size but t 
dimension, say 6x. At any tj , L? is populated by a group of Nj molecules pi 
I . ~. Nj, which represents the fluid, of which Ntij occupy cell I% so that Ck Nkj = ilr:‘. 
Each pi actually represents a sample molecule of the gas and each has an x coordinate 
xi ) I‘ = 1 ..* I@. Individual particle x-velocities ui and internal energies e+ (deflned 
through Eq. (3)) are not stored, but the current total momentum P,j and total mass 
center energy .&,j of the Nkj particles in wk at ti are stored. Note t 
dimensional problem Eq. (3) is the most convenient form for the i 
while for a tkree-dimensional flow the internal energy proper e = $V 
more appropriate. 

3.1. EPSM Algorithm 

scheme is as follows 

I. Set all Ni+l, Pi+l, Ei*’ = 0 while retaining Nki, P,j, &j. Put &+n = (j + 1) db* 
II. For eachp, ) i = 1 ‘0. iV, in sequence: 
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1. Calculate ui and ei for the particle by the method indicated in Section 3.2. 
2. Move the particle in a straight-line trajectory a distance ui dt. If X?(t) is 

encountered during movement, implement boundary strategies as described sub- 
sequently. 

3. Determine the cell number e, generally different from the initial cell number k 
in which the particle trajectory terminates. Add the particle and its momentum and 
energy to Nz+l, Pz+l, Ez”, and subtract the same from Nkj, Phi, and Ekj. 

III. Implement any additional boundary conditions on LX? (e.g., new particles 
entering Q) if required. 

IV. Compute the current estimate of the average fluid density, velocity, and 
temperature in each OJ~ , k = 1 **. K, at tj+l from ensemble (over several realizations 
of the simulation) or timewise summations of the cell fluid mass, momentum, and 
energy as in DSM [3]. 

V. Return to I and continue the calulation. 

The overall calculation is terminated when convergence is reached in the sense of 
obtaining acceptable statistical estimates of some or all of the cell flow properties. 
Internal gas pressures may be calculated from the perfect gas equation of state 
P = pRT. 

The boundary conditions for EPSM should be equivalent to the zero normal velocity 
at a solid boundary used in standard inviscid fluid mechanics. This can be achieved 
using the so-called specular-reflection law for particles striking a solid boundary, 
in which the particle velocity normal to the boundary is reversed while the tangential 
velocity remains unchanged. At a free boundary in the fluid the appropritae boundary 
condition will usually be equilibrium flow of the free stream as in DSM. 

3.2. Calculation .of Particle Velocities 

For convenience we now drop thej, k indices used previously. Consider N particles 
in some typical cell at some time instant with mean velocity and total mass center 
energy 

E = 5 [ei + +m(ui - ii)“], 
i=l 

(4b) 

where U = P/(mN). The 6, E either will be the results of execution of steps I-IV, 
Section 3.1, during the previous At or will represent some initial condition for the 
problem. From the generalized internal energy distribution in an equilibrium gas it 
may be shown that the average e per particle for N particles with total energy given 
by Eq. (4b) is 

(2 + 4 
’ = N(3 + v) - 1 E- (5) 
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Putting ei = 2, i = 1 ... N, thus gives a simple formula for calculating the ei 1 
Substituting this result into Eq. (4b) we obtain for the total mass center a one- 
of-freedom translational energy of the N particles 

Wow the assumption of local equilibrium in each cell means that each ui ) 
i=l 1.. N, may be regarded as a sample from the distribution given by Eq. (2). The 
joint probability distribution for the sample is thus 

dF(u, , u2 ,..., uN) a exp [ - --& ,t (q - 
2=1 

where p1 is the cumulative joint probability distribution function and e/h(x, t) and 
Y(x, r) are the unknown local fluid x-velocity and temperature in the cdl, which may 
be taken to be some kind of average over the cell. The problem of choosing the ui 
for the next particle movement simulation may now be i~ter~reted as choosing ui , 
i = 1 .~. IV, from the distribution equation (7) but with given sample statistics 
(~o~straints) fi, E’ given by Eqs. (4a) and (6) respectively. The solution to this 
problem is stated in the Appendix. The derivation (see [Le]) folows from a series of 
tra~~sformatio~s on the ui , i = 1 ... N, and on Eq. (7) through which G, E’ become 
independently distributed variables. These quantities may then ~oflvenie~~ly &&j 
constant according to the constraint equations (4a) and (4). Fr the point of view 
of solving the fluid mechanics problem, that is, of determi~~g U&C, t), Y(X, t), it 
should be remarked that the generation of the tii, t = 1 *.. N, does 
knowledge of these quantities even though they appear in Eq. (7). This is 
constraint Equations (4a) and (6) are just sufficient information to determine the 
distribution of ui independently of U,, , T. Note also that since Eqs. (4a)p (6) are 
satisfied, then machine truncation and round-off error apart, EPSM exactly conserves 
mass, momentum, and energy for the sample-particle ensemble throughout the 
calculation. 

4. EQUILIBRIUM FLUX METHOD @FM) 

The basic idea underlying EPSM is that transport mechanisms in an eq~~~ibr~~rn 
fluid are simulated directly by the motion of the sample-particle ensembie. If the form 
of the local f is known, however, the local Bux of mass, momentum, and energy across 
cell boundaries can be calculated analytically. For a nonequi~ibri~m flow f is an 
unknown of the problem so that the flux quantities can only be calculated if higher 
moments off are expressed in terms of lower ones (and their derivativ~s~; that is, if 
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fluid constitutive relations are given. In an equilibrium flow, the fluxal quantities can 
be readily calculated for an arbitrary surface element. In EFM the EPSM particle 
ensemble simulation is replaced by a scheme in which adjacent cells in a cell network 
interact directly through exchange of mass, momentum, and energy, the exchange in 
At being calculated using the equilibrium fluxal relations. No sample particles are 
required and the calculation proceeds deterministically in the time-interval sequence 
with no Monte Carlo element. 

In implementing EFM boundary conditions it will be generally convenient to 
employ a cell mesh which moves with the overall flow region boundaries. Expressions 
for fluxal quantities across a stationary surface element in a three-dimensional 
equilibrium flow given in Ref. [3] would thus be suitable for a problem with fixed 
boundaries in one or more dimensions. For moving boundaries as in the present 
one-dimensional unsteady flow application, we employ a moving-cell mesh with 
boundaries &u,(t), k = 0 *.* K, which deform with aJJ(t). Consider the flux of 
molecular quantities across a moving boundary &J~, normal to an equilibrium 
uniform stream. Let f0 be given by (2) with U, = (U, , 0, 0) and let aorc move with 
speed U, with respect to laboratory coordinates as shown in Fig. 1. Then the flux 
of some molecular quantity Q(u, u, W) across &J, in the positive x-direction with 
respect to the laboratory framework is 

per unit area per unit time. Putting Q = m, mu, iJrnt.8, and me, we obtain, respectively, 
the flux of mass, momentum, one-degree-of-freedom translational energy, and internal 
energy across &J, per unit time per unit area in the positive x-direction as 

$ = L [e-+’ 
P 

+ rr”‘2s,H(s,)]/(2~1’2), 

---2-P pu - - [se+? + n-l’“{-& + ss,} H(sT)]/(27P2), 
P” 

Bpu3 = + [(I + s”) ees2 + ?P2fS + &ST + s,s2} H(.s,)]/(4#), 

jiZ=$ie, 

(94 

Pb) 

(94 

Pd) 

where s = /31J0 is the speed ratio, s, = &Jo - U,), H(s,) = 1 + erf(s,), where erf 
represents the error function, and p = mn. 

If &J, is a solid specularly reflecting boundary Eq. (8) represents the incident flux. 
The sum of the incident and reflected flux of Q is given by 
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FIG. 1. Cell boundary ib, moving with speed Ub and free stream moving with bulk speed U, 
for calculation of molecular flux across &J, in positive x-direction. 

from which it follows that the summed mass flux vanishes as required. The momentum 
and total energy flux are, respectively, 

pu2 = p [s,P: + 7P2(* + ST”> H(s,)]/7P”, 
P 

pu(g2 + E) = u, pu2~ 

(lla) 

(1 lb) 

4. I _ EFM Algorithm 

For EFM Q(t), X?(t) and the time discretization are as for EPSM. The cell 
boundaries are known functions of time so that their instantaneous speeds are known. 
Current values of the fluid mass A4 kj, momentum pbj, and total energy E,j in the 
laboratory framework in wlc, k = 1 -.. K at t = tj are stored. The average fluid 
density pkj, velocity W,<j, and temperature Tkj in IL+ at f = tj are defined by 

where dxkj is the known cell size and the second term in Eq. (12~) represents the rofar” 
thermodynamic specific internal energy. The EFM algorithm is then as follows: 

I. Set all A@l, Pi+l, Ei+l = 0 while retaining Mkj, and &cj. Put Ij.a-1 == 
(j -t B) 4t. 

II’. For each cell wk, k = 1 ... K, 

1. Calculate prcj, Ukj, and Tr,j from Eqs. (12). 
2. For each boundary of wlc, calculate the quantity of mass, momentum, and 
gy crossing from wIL- in At using Eqs. (9) and assuming constant pkg, Ukj, and TJ2 
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3. Subtract this amount of mass, momentum, and energy from cell k quantities 
(vectorially for momentum) and add it to those for the cell on the other side of the 
current cell boundary. 

4. If the current boundary is a solid surface calculate the momentum and energy 
exchange using Eqs. (11). 

III. Implement any additional boundary conditions on X? (e.g., at a nonsolid 
boundary). 

IV. Return to I and continue the calculation. 

At any time j dt, the solution is represented by values of pkj, Ukj, Taj as calculated 
in step II, part 1. Note that the evaluation of Eqs. (9) and (11) requires the calculation 
of one error function per cell boundary, which can be done efficiently using a standard 
rational approximation [5]. The boundary conditions at a solid boundary are included 
in step II, part 4. For a free boundary in the fluid, the appropriate boundary con- 
ditions will be as for EPSM and DSM except that here the inward fluxes are calculated 
analytically. 

It may be observed that the gas pressure does not appear explicitly in either EPSM 
or EFM and as a physical variable it takes no direct part in the calculations. If the 
flow field local pressure is required, however, it can be calculated in cells using the 
perfect gas equation of state from the calculated temperature and density. At solid 
boundaries the surface pressure follows directly as a momentum exchange during 
the implementation of boundary conditions. The present treatment of pressure may 
be thought of as the equivalent of eliminating the pressure as an independent variable 
in a continuum description, using the state equation. 

5. CALCULATED EXAMPLE 

As a simple calculated example, the one-dimensional unsteady piston-shock 
propagation problem was computed using both EPSM and EFM. The simulated 
fluid is a length L of a stationary gas with ratio of specific heats chosen as y = 1.4 
(v = 2), and at temperature TI and density p1 . At time t = 0, a piston initially at 
x = 0 moves in the positive x-direction with constant velocity U, , thus generating 
in the inviscid fluid a discontinuous shock wave with velocity U, > U, . Fluid con- 
ditions in the undisturbed gas and those between the piston and the shock are denoted 
by 1 and 2, respectively. The constant piston velocity was chosen as z”r, = 
lJ,/(2RTJ1i2 = 1.859 for which the exact solution is the Rankine-Hugoniot shock 
moving 
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as 2 = t(2RT$12/L. Initially the molecules were placed in random positions between 
the two pistons and initial values 21, E given by Eqs. (4) in each cell were chosen from 
the sample distributions for these quantities according to the appropriate statistics 
for the initial distribution equation (2) (see Ref. [6]), The calculation was then 
executed as in Section 3.1. The solution obtained is of a statistical nature and if 
is the total number of particles contributing to an estimate of U, T, or p in some cell, 
then one may expect (it in fact can be shown from the appropriate sample distri- 

utions) statistical scatter to be of order &Wz as for DSM [3f* Since at any instant 
in the simulation we have about 2000/40 x p2/p1 w 200 particles per cell between 
the moving piston and the shock, then to obtain sampies of order 1000 for -3 “/o 
statistical scatter in this region the simulation is repeated five times with inde 
initial conditions, and the results are averaged over the five ensembles. 

For the EFM calculation a set of K = 50 moving cells between the pistons was 
employed, with boundaries at time t given by 

xk/L = U,tjL(l - k/K) + k/K, k = o,..., K. (13) 

Nondimensionalization of velocity and time were as for ERM. Nere of course the 
calculation proceeds directly and no averaging is required. For each metbod severaI 
separate calculations for different .4f were performed to test the effect of the time ste 
on the predicted flow field and on the general behavior of the c 

Results for density and temperature profiles at Z = 0.75/0$ each method are 
shown in Figs. 2a and b, respectively, compared to the exact 
solution. Both sets of calculations quite accurately predict the position of the 
shock with the discontinuity being smeared over 2-3 cell lengths. The smeare 
appeared quite naturally in each calculation so that the schemes may be classed as 
“‘shock capturing.” For EPSM, the predicted pIpI and T/T, in cells between the 
shock and the moving piston are in good agreement with the Ran~ne-~u~oni~~ 
values within the limits of statistical scatter. There appears to be a small but systematic 
underprediction of pIpI , and corresponding overprediction of T/T, in the EF 
calculation very near the wall. The expbnation of this effect is not clear but it may 
due to an artificial near-boundary heating effect discussed in [73 as a possible expla- 
nation of a similar effect observed in shock reflection calculations for lo 
difference schemes. Cyber 72 execution times for 60 time steps were of 
for each EPSM calculation and 6 set for each EFM calculation. 

For both schemes, the time step 42 = .4t(2RT,)1/2/L. must be such that 

where 5 is some estimate of the local fluid velocity relative to the stationary or moving 
mesh In EPSM (14) must not be violated if particles are to move only one cell len 
during each AE, thus allowing each to adjust to local conditions before the 
incremental movement. Similarly violation of (14) for EFM would imply a le 
scale for local transport mechanisms in excess of A32: in Ai, whereas it is irn~~i~it~~ 
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FIG. 2. Calculated density and temperature profiles for one-dimensional piston-shock problem 
compared with exact solution (a) EPSM calculation, (b) EFM calculation; t^ = 0.7.5/oS . Values of 
At* as indicated. 

assumed as <da in step II, part 3, of the EFM,algorithm (that is, across a single cell 
boundary in A!). It is interesting to note that violation of (14) for EPSM did not 
appear to result in any instability of the calculation in the sense of nonconvergence 
of the solution as AkrJ2. The reason is simply that altering 49, Lilt does not directly 
affect the speed of propagation of an acoustic disturbance which in EPSM moves 
naturally with the motion of the sample particles. For the two EPSM calculations 
which violate (14) (12 = 2AS/Os , 6AS/C?J, Fig. 2a shows that only the latter yields 
appreciable error with no sign of instability. ‘For this scheme, then, violation of the 
time-step condition by a factor r may be interpreted, as an effective increase in cell 
size by this factor since particles would then move on the average r cell lengths per 42. 
The discontinuity in flow properties would be smeared over (2-3) x r cells, which is 
consistent with the Al = 6A~Sl0~ results for which (14) is violated by a factor of 
about 10. Clearly the effective increase in cell size for this case is too large to resolve 
the flow field away from the discontinuity. 
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For EFM, on the other hand, the acoustic disturbance propagation speed is im- 
plicitly limited to a single Aa in A2 so that its stability behavior may be expected to 
similar to finite-difference methods for which the usual stability criterion is analogous 
to (14). For AZ < Aa/Os, Fig. 2b indicates that the EFM calculation is stable. 
Near-shock oscillations appear for AZ = 0.75.4$/C?, but these appear to be of rather 
smaller amplitude than equivalent finite-difference calculations. For A2 2 Aa/os , 
the calculation was found to be unstable. 

6. DISCUSSION 

0th EPSM and EFM follow from the same principle, namely, the direct calculation 
of molecular inertial transport from the local f0 . In interpreting these schemes 
physically however, one important point should be made. In ERM, unlike D 
the actual paths of fluid “molecules” are not physically significant since the mean 
path is effectively zero on the scale of a cell. Similarly Eq (8) can only be strictly used 
to calculate molecular transport over distances short compared with the mean free 
path. Nevertheless the present calculation of local transport from f0 over distances 
and times effectively infinite compared to microscopic scales can be justified on t 
grounds that fluid properties and hence f, are assumed to be constant over each cell 
and to vary only slightly between adjacent cells. 

While EPSM is perhaps best viewed as the appropriate equilibrium version of IX 
EFM is similar in some respects to both finite-element and finite-difference methods. 
It is similar to some cell-finite-element methods [8] in that attention is focused on 
averaged flow properties over cells and on cells as flow subdomains interacting with 
other cells only at cell boundaries. On the other hand if EFM were applied at cell 
centers rather than at cell boundaries-across which averaged flow properties are 
regarded as discontinuous-then a conventional forward-ditference ~nite-di~~re~~~ 
scheme would result since the exponential and error terms of Eqs. (9) ~o~tributi~~ 
to the thermal component of molecular transport would cancel. 

The present schemes might thus be seen as a link between direct particle simulation 
methods and continuum methods with EFM in particular having some features of 
both approaches. Compared with conventional continuum methods they have several 
advantages and disadvantages which are summarized briefly below. 

1. Longer execution times than continuum methods. For EPSM very long 
execution times are a result of calculating particle velociti.es and following particle 
trajectories, and also of the rather slow statistical convergence as M-Ii2 for any now 
property. For EFM, execution times appear to be longer than but comparable to 
those for finite difference schemes. 

2. Core storage. For EPSM, in addition to storing flow properties at time t and 
1 + At, individual particle positions must be stored. 

3. Statistical nature of solution for EPSM. 
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Advantages : 

1. Flexibility. Application of EPSM, EFM to complex boundary conditions is in 
principle quite simple. For two- or three-dimensional-flows, single programs can be 
written (for example, modifications of Bird’s so-called “Universal” DSM programs) 
which can handle almost any internal or external flow problem. 

2. Stability. EPSM appears to be unconditionally stable. The stability character- 
istics of EFM are similar to those of finite-difference methods. 

3. Both EPSM and EFM conserve mass, energy, and momentum to within the 
limits of machine accuracy. 

4. No pseudoviscosity or other artificial dissipative mechanisms appear to be 
necessary. 

7. CONCLUDING REMARKS 

Two related schemes suitable for the calculation of unsteady equilibrium perfect-gas 
flows have been presented. While the execution time and core storage penalties 
incurred in the equilibrium particle simulation method are probably sufficient to rule 
out the scheme for practical purposes, it nevertheless remains of some conceptual 
interest. Due to the great complexity of the Boltzmann equation, particle simulation 
methods are perhaps the only practical means of treating highly non-equilibrium gas 
flows. On the present results, however, they do not appear to offer a viable alternative 
to more standard methods for equilibrium flow problems. 

The present encouraging results obtained with the equilibrium flux method indicate 
that this scheme may be worthy of further development with possible applciation 
in the calculation of problems involving complex boundary conditions. Desirable 
extensions of this method not treated herein include the incorporation of viscous and 
heat-conduction effects and the treatment of fluids with more complicated equations 
of state than that of the simple perfect gas. The inclusion of viscous and heat- 
conduction effects is in principle possible through the use of the Chapman-Enskog 
near-equilibrium distribution of particle velocities-which implicitly contains the 
fluid constitutive relations-in place of the Maxwellianf, given by Eq. (2). The fluxal 
quantities in a Chapman-Enskog gas (including the flux of tangential momentum 
representing shear stresses) can be readily calculated and are not much more compli- 
cated than Eqs. (9) and (11). The results do depend explicitly on local first-order 
gradients of fluid macroscopic quantities which would have to be calculated in practice 
using a spatial-differencing scheme but differenced estimates of second-order partial 
derivatives would not be required. Although the equilibrium flux method was derived 
from the ideal-gas direct simulation method, its operation does not depend on the 
physical implications of the dilute gas assumption but rather on that of local macro- 
scopic equilibrium. Equilibrium statistical mechanics shows that Eq. (2) represents 
the single-particle linear-momentum distribution for a general fluid in thermodynamic 
equilibrium. The application of the method to the general fluid then follows heurist- 
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icahy by replacing Eq. (3) with the appropriate general internal energy state relation, 
the pressure in cells being calculated using the relevant P-p-7’ state equation. 

APPENDIX 

In the language of statistics, the problem of generating the EPSM particle velocities 
is equivalent to that of generating N random numbers, each of which is sampled 
from a parent normal distribution (Eq. (2)), with given sample mean and variance 
(essentially ii, E’) but with unknown parent distribution mean and variance (UO 4 7’). 
The solution [4], stated below in the form of an alogrithm, proceeds along the lines 
of the exact sampling distribution theory in mathematical statistics [6, Chap. 111 
which leads to independent distributions for the sample mean and variance for a 
normal distribution. 

Assume that values of U, E’ defined by Eq. (4a) and (63, respectively, are given, 
ut Y = (N - I)/2 - p, where p = 0 if N - 1 is even and p = -k if N - B is o 

Put 7j = I’ + 2/A. 

1. Calculate eg as 

where Pm is a pseudo-random number uniformly distributed in (0, I). 
2. Calculate uj , j = 2 ,..., n, as 

v 2m = (2eL)1/2 COS(~T&,), (16a) 

v2m+l = (2e$J1/2 sin(27&,), m = 1 **- j”, (16b) 

where L@& is a pseudo-random number uniformly distributed in (0, I). If N - I is 
odd calculate 

ZiN = &(2e;)1i2 

with equal probability & for the plus and minus signs. 
3. Calculate the ui from 

% = %-I + (N + 1 - i)-lj2 [(N + 2 - i)1/2 vi - (N - j)V v)i+l]; 
j = 2 .*. N. (27b) 
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In practice one need not carry out these operations in the above order but may work 
through steps l-3 for each of i = 1 ..* N in a manner consistent with step II of 
Section 3.1. The most time-consuming part of the calculation procedure is the 
generation of the pseudo-random numbers, the fractional root in Eqs. (15), and the 
calculation of the z+ , j = 2, N in Eqs. (16). Equations (17) are in a simple recursive 
form efficient for calculation (the roots in these equations may be set in a small array 
at the beginning of the computation) and Eqs. (15) may be likewise expressed in 
recursive form. 
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